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Overview

© Review of Plane Curve Geometry
@ Curve Shortening Flow

© In Python

@ Review of Surface Geometry

@ Gauss Curvature Flows
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Review of Plane Curve Geometry

Curve shortening flow is a plane curve theory so we review the basics

Definitions

o A Immersed Planar Curve is a smooth map X : | — R? satisfying the
condition |X'(u)| #£ 0 for u € |

@ The Unit Tangent Vector T is the derivative of an immersed planar

curve with respect to an arclength parameter given by T = % = %

@ Rotating the unit tangent vector counter clockwise by 7 gives us the
Unit Normal Vector N
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Review of Plane Curve Geometry
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Review of Plane Curve Geometry

Differentiating N and T gives us our last invariant, Curvature.

Definition
The curvature, k of a plane curve is defined by the Frenet-Serret

equations:
dN

— — «T
ds m

dT

~  — _kN
ds m

Intuitively, this tells us how much the unit normal changes
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Review of Plane Curve Geometry

Note that since T is a unit vector, we can describe it via it's turning angle,

¢

T = (cos¢, sing)
so, differentiating yields the following

dT _do .
e ds( sing, cos¢)

via Frenet-Serret, we get the nice relation

_4d¢
ds

K
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Curve Shortening Flow

Now, let X : M* x [0, T) — R? be a smooth map which is an immersion
foreach t € [0, T)

We say X(t) is a solution to the Curve-Shortening Flow if

X
O () = —(u, ON(w, 1
or, via the Frenet-Serret equations:
oX 92X

E(u, t) = ﬁ(u, t)
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Curve Shortening Flow

Now for some results

suppose X; : M} x [0, T) — R2 be solutions to the curve shortening flow
satisfying X1(M3,0) N Xa(M3,0) = 0 then X1 (M7, t) N Xo(M3,t) =0 for
each te [0, T)

let Xy : M} — R? be a smooth embedding of M* then the solution to
curve shortening flow with initial data Xo exists on a maximal time interval
[0, T) and converges to a point in R?

o

Famously, curve shortening flow was used in a modified version of
Hamilton's program by Perelman to prove the Poincare Conjecture in 2003
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In Python

Goal: Implement curve shortening flow in Python
Steps:

@ Approximate a curve with finite number of points
@ Compute invariants at each point

© Use Euler’'s method to integrate the curve shortening flow equation
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Review of Surface Geometry

We want to generalize the idea of curvature flow to surfaces, so we review
some surface geometry

o let M" be a smooth n-dimensional manifold and let X : M" — R"*!
be a smooth immersion. Then we regard the image M := X(M") to
be a hypersurface in R"*1

@ we define the Gauss map to be the map G : M — S" taking points
p € M to it's corresponding unit normal vector in N € §”
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Review of Surface Geometry

N
G
T T
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Review of Surface Geometry

Differentiating the Gauss map at a point, gives us the Weingarten map
given by the linear map

—Wpm = DpG - TyM — Tg(,)S?

Intuitively, this tells us how the unit normal changes at a point and gives
rise to a curvature for hyersurfaces

Definition

The Gaussian curvature of a hypersurface M at the point p € M is given
by K := det(Wp, m)

With this we introduce the Gauss curvature flow
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Gauss Curvature Flows

A smooth 1-parameter family X : M" x | — R"*1 satisfies the a-Gauss
curvature flow if it satisfies

0 X = —sign(a) K“N

Where K is the Gauss curvature of the family.

When o = 1, we call this flow the Gauss curvature flow, which is a natural
generalization of curve shortening flow
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Gauss Curvature Flows

For uniformly convex solutions, in particular, we get a nice theorem
regarding convergence

Given oo > 0 and a smooth uniformly convex hypersurface M of R, then
there exists a unique smooth solution {M;}c[o ) with initial data M
which remains uniformly convex on [0,T) and shrinks to a point as t — T

However, this does not ensure convergence to a round point!
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Gauss Curvature Flows

An improtant integral quantity associated with a hypersurface is the
Gaussian Entropy given by

- (50 (3 )

Which characterizes regularity of M
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Gauss Curvature Flows

1
n+2

an interesting case arises when a =

Let X : M x [0, T) — R" 4+ 1 be a smooth uniformly convex solution to
the %H-Gauss curvature flow. Given L € SL(n+ 1,R), there is a family of
diffeomorphisms ¢ such that X(x, t) = L(X(é(x, t), t)) is also a solution
to the flow

In other words, the ﬁ flow is affine invariant
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Gauss Curvature Flows

We're interested in the self-similar shrinking solutions to the affine normal
flow.

let M be a smooth uniformly convex hypersurface. Then M is a critical
point of E 1 iff M is a self-similar solution to the affine normal flow
n+2

Proposition

Any smooth uniformly convex hypersurface which is a critical point of
E 1 is an ellipsoid
n+2
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Gauss Curvature Flows

Piecing together the last two propositions we get a nice theorem

The self-similar solutions to the affine normal flow are the ellipsoids which

are critical points of E 1
n+2

With this condition we can discern whether the affine normal flow

convergence to a round point!
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The End
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