The 2-dimensional Mahler conjecture

Abdulrahman Alenazi Mentor: Vlassis Mastrantonis

University of Maryland, College Park

Spring 2022

€⊡

- **1** The polar of a convex polytope.
- 2 A lower bound for triangles.
- **3** The sliding argument.

в

 \rightarrow

4 **D F**

э

Convex Polytopes

Let $P = \text{conv}\{p_1, \ldots, p_n\}$ be a convex polytope on the plane with vertices p_1, \ldots, p_n . Here, $conv\{p_1, \ldots, p_n\}$ denotes the smallest convex set containing p_1, \ldots, p_n .

For a convex polytope P containing the origin in its interior $0 \in \text{int } P$, one can describe P as the intersection of half-planes

$$
P = \bigcap_{i=1}^n \{ (x,y) \in \mathbb{R}^2 : a_i x + b_i y \leq 1 \}.
$$

This generates n new points $Q_i = \left({{a_i},{b_i}} \right)$ that lie in the direction normal to the edge $\left[p_i,p_{i+1}\right]$.

 Ω

Convex Polytopes

Using this one can form a new polytope called the *polar polytope* defined by $P^{\circ} := \text{conv}\{\mathsf{Q}_1,\ldots,\mathsf{Q}_n\},\$ or equivalently $P^{\circ} = \{ (x, y) \in \mathbb{R}^2 : ax + by \le 1, \text{ for all } (a, b) \in P \}.$ x y $p₁$ $p₂$ $p₃$ $\begin{array}{c|c|c|c|c|c} \hline \multicolumn{3}{c|}{\textbf{0}} & & \swarrow & \multicolumn{3}{c|}{\textbf{0}} & & \swarrow & \textbf{Q}_5 & & \times \end{array}$ y Q_2 \longrightarrow Q_1 $Q₃$ $0 \sim Q_5$

 p_4 p_5

 \mathcal{Q}_4 \mathcal{Q}_4

Polarity is a duality operation: the polar of the polar polytope is the original body, i.e., $(P^{\circ})^{\circ} = P$.

Moreover, by definition, the bigger P is the smaller P° becomes and vice-versa. As a result, an interesting question occurs: Is

 $\mathcal{M}(P) := |P||P^{\circ}|,$

the product of their volumes, bounded?

Our goal in this talk is to prove the following theorem, following Mahler's argument.

Theorem

For all convex polytopes $P \subset \mathbb{R}^2$,

$$
\mathcal{M}(P)\geq \frac{27}{4}.
$$

 \leftarrow \Box

Þ

The first step is to prove the bound for triangles. Let $\Delta = \mathrm{conv}\{ \rho_1, \rho_2, \rho_3 \}$ be a triangle with vertices $\rho_i = (x_i, y_i)$, and

$$
\Lambda_1 = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}, \Lambda_2 = \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}, \Lambda_3 = \begin{vmatrix} x_3 & y_3 \\ x_1 & y_1 \end{vmatrix}
$$

the volume of the parallelogram with vertices $0, p_1, p_2, p_1 + p_2$. Then,

$$
|\Delta|=\frac{1}{2}(\Lambda_1+\Lambda_2+\Lambda_3).
$$

 \mathbf{p}

 $\rightarrow \equiv$

重

K ロ ト K 伊 ト K 毛

Moreover, Δ is bounded by the lines

$$
(y_2 - y_1)x - (x_2 - x_1)y = \Lambda_1,(y_3 - y_2)x - (x_3 - x_2)y = \Lambda_2,(y_1 - y_3)x - (x_1 - x_3)y = \Lambda_3.
$$

As a result, the polar triangle

$$
\Delta^\circ=\mathrm{conv}\{\mathit{Q}_1,\mathit{Q}_2,\mathit{Q}_3\}
$$

where

$$
Q_i=\left(\frac{y_{i+1}-y_i}{\Lambda_i},\frac{x_i-x_{i+1}}{\Lambda_i}\right),\,
$$

4 0 8

→ 何 ▶

重

э **D**

As before, for \mathbf{r}

$$
\tilde{\Lambda}_i := \begin{vmatrix} Q_i \\ Q_{i+1} \end{vmatrix} = \frac{1}{\Lambda_i \Lambda_{i+1}} \begin{vmatrix} y_{i+1} - y_i & x_i - x_{i+1} \\ y_{i+2} - y_{i+1} & x_{i+1} - x_{i+2} \end{vmatrix} = \frac{\Lambda_1 + \Lambda_2 + \Lambda_3}{\Lambda_i \Lambda_i},
$$

the volume

$$
|\Delta^\circ|=\frac{1}{2}(\tilde{\Lambda}_1+\tilde{\Lambda}_2+\tilde{\Lambda_3})=\frac{(\Lambda_1+\Lambda_2+\Lambda_3)^2}{2\Lambda_1\Lambda_2\Lambda_3}.
$$

イロト イ部 トイヨ トイヨト

重

Lemma

For $\Delta\subset\mathbb{R}^2$ a triangle, $\mathcal{M}(\Delta)\geq 27/4$.

Proof. If 0 \notin int Δ , the polar $|\Delta^{\circ}| = +\infty$. Therefore, we may assume $0 \in \text{int } \Delta$. By the previous formulas,

$$
|\Delta| = \frac{\Lambda_1 + \Lambda_2 + \Lambda_3}{2},
$$

$$
|\Delta^{\circ}| = \frac{(\Lambda_1 + \Lambda_2 + \Lambda_3)^2}{2\Lambda_1\Lambda_2\Lambda_3}.
$$

Thefore, by the AM–GM inequality,

$$
\mathcal{M}(\Delta):=|\Delta||\Delta^\circ|=\frac{(\Lambda_1+\Lambda_2+\Lambda_3)^3}{4\Lambda_1\Lambda_2\Lambda_3}\geq \frac{3^3\Lambda_1\Lambda_2\Lambda_3}{4\Lambda_1\Lambda_2\Lambda_3}=\frac{27}{4}
$$

.

It remains to show the following:

Theorem

For $\Pi_m\subset \mathbb{R}^2$ a polytope with $m\geq 4$ vertices, there exists a polytope Π_{m-1} with $m-1$ vertices such that

$$
\mathcal{M}(\Pi_{m-1}) < \mathcal{M}(\Pi_m).
$$

This would imply the desired bound, since by the previous Theorem, the Mahler volume is minimized among triangles, for which we know that $M \geq 27/4$ as desired.

The sliding

Proof of Theorem. For technical reasons we restrict to $m \geq 5$ and $0 \in \Pi_m$. Split

$$
\Pi_m=P\cup\Delta
$$

to a disjoint union as below,

∍

Note that since $P \subset \Pi_m$ the polars $\Pi_m^{\circ} \subset P^{\circ}$. In particular,

$$
\tilde{\Delta}:=P^{\circ}\setminus \Pi^{\circ}_m,
$$

is also a triangle because the points Q_0 , Q_1 , Q_5 are colinear, and Q_0 , Q_2 , Q_3 are also colinear.

The sliding

Mahler's idea was to slide p_2 along the line parallel to $[p_1, p_3]$ so that p_3 becomes colinear to p_2 and p_5 , or p_1 becomes colinear to p_2 and p_m , such that

$$
|\Delta|=|\Delta'|.
$$

Note that

$$
\Pi_{m-1}:=P\cup \Delta'
$$

is a polytope with $m-1$ vertices so that

 $|\Pi_m| = |\Pi_{m-1}|,$

so it remains to show that

 $|\Pi_{m-1}^{\circ}| < |\Pi_m^{\circ}|.$

However,

$$
|\Pi_{m-1}^{\circ}|=|P^{\circ}|-|\tilde{\Delta}|.
$$

●▶

4 **D F**

э

$$
|\tilde{\Delta}| = \frac{1}{2} \left(\begin{vmatrix} Q_1 \\ Q_0 \end{vmatrix} + \begin{vmatrix} Q_0 \\ Q_2 \end{vmatrix} + \begin{vmatrix} Q_2 \\ Q_1 \end{vmatrix} \right) = \frac{(\Lambda_1 + \Lambda_2 - \Lambda_0)^2}{2\Lambda_0 \Lambda_1 \Lambda_2}.
$$

$$
= \frac{2(|\Delta| - \Lambda_0)^2}{\Lambda_0 \Lambda_1 (2|\Delta| - \Lambda_1 - \Lambda_0)} = \frac{c}{\Lambda_1 (b - \Lambda_1)},
$$

검사 K 검사

K ロ ▶ K 倒 ▶ K

目

As we slide p_2 along the line parallel to $[p_1, p_3]$ one may compute volume of $\tilde{\Delta}$ to change as shown in the graph below:

Note that this has unique minimum and increases from there. Therefore, if we move at the right direction we can make sure that either p_1 or p_3 will "disappear" while the volume of Δ will have increased, i.e., the volume of the polar has decreased.

Thank you!

K ロ ▶ K 伊 ▶ K

검사 K 검사

目